PySpark DataFrame Loader
This notebook goes over how to load data from a PySpark DataFrame.
#!pip install pyspark
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/05/31 14:08:33 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
df = spark.read.csv("example_data/mlb_teams_2012.csv", header=True)
from langchain.document_loaders import PySparkDataFrameLoader
loader = PySparkDataFrameLoader(spark, df, page_content_column="Team")
loader.load()
[Stage 8:> (0 + 1) / 1]
[Document(page_content='Nationals', metadata={' "Payroll (millions)"': ' 81.34', ' "Wins"': ' 98'}),
Document(page_content='Reds', metadata={' "Payroll (millions)"': ' 82.20', ' "Wins"': ' 97'}),
Document(page_content='Yankees', metadata={' "Payroll (millions)"': ' 197.96', ' "Wins"': ' 95'}),
Document(page_content='Giants', metadata={' "Payroll (millions)"': ' 117.62', ' "Wins"': ' 94'}),
Document(page_content='Braves', metadata={' "Payroll (millions)"': ' 83.31', ' "Wins"': ' 94'}),
Document(page_content='Athletics', metadata={' "Payroll (millions)"': ' 55.37', ' "Wins"': ' 94'}),
Document(page_content='Rangers', metadata={' "Payroll (millions)"': ' 120.51', ' "Wins"': ' 93'}),
Document(page_content='Orioles', metadata={' "Payroll (millions)"': ' 81.43', ' "Wins"': ' 93'}),
Document(page_content='Rays', metadata={' "Payroll (millions)"': ' 64.17', ' "Wins"': ' 90'}),
Document(page_content='Angels', metadata={' "Payroll (millions)"': ' 154.49', ' "Wins"': ' 89'}),
Document(page_content='Tigers', metadata={' "Payroll (millions)"': ' 132.30', ' "Wins"': ' 88'}),
Document(page_content='Cardinals', metadata={' "Payroll (millions)"': ' 110.30', ' "Wins"': ' 88'}),
Document(page_content='Dodgers', metadata={' "Payroll (millions)"': ' 95.14', ' "Wins"': ' 86'}),
Document(page_content='White Sox', metadata={' "Payroll (millions)"': ' 96.92', ' "Wins"': ' 85'}),
Document(page_content='Brewers', metadata={' "Payroll (millions)"': ' 97.65', ' "Wins"': ' 83'}),
Document(page_content='Phillies', metadata={' "Payroll (millions)"': ' 174.54', ' "Wins"': ' 81'}),
Document(page_content='Diamondbacks', metadata={' "Payroll (millions)"': ' 74.28', ' "Wins"': ' 81'}),
Document(page_content='Pirates', metadata={' "Payroll (millions)"': ' 63.43', ' "Wins"': ' 79'}),
Document(page_content='Padres', metadata={' "Payroll (millions)"': ' 55.24', ' "Wins"': ' 76'}),
Document(page_content='Mariners', metadata={' "Payroll (millions)"': ' 81.97', ' "Wins"': ' 75'}),
Document(page_content='Mets', metadata={' "Payroll (millions)"': ' 93.35', ' "Wins"': ' 74'}),
Document(page_content='Blue Jays', metadata={' "Payroll (millions)"': ' 75.48', ' "Wins"': ' 73'}),
Document(page_content='Royals', metadata={' "Payroll (millions)"': ' 60.91', ' "Wins"': ' 72'}),
Document(page_content='Marlins', metadata={' "Payroll (millions)"': ' 118.07', ' "Wins"': ' 69'}),
Document(page_content='Red Sox', metadata={' "Payroll (millions)"': ' 173.18', ' "Wins"': ' 69'}),
Document(page_content='Indians', metadata={' "Payroll (millions)"': ' 78.43', ' "Wins"': ' 68'}),
Document(page_content='Twins', metadata={' "Payroll (millions)"': ' 94.08', ' "Wins"': ' 66'}),
Document(page_content='Rockies', metadata={' "Payroll (millions)"': ' 78.06', ' "Wins"': ' 64'}),
Document(page_content='Cubs', metadata={' "Payroll (millions)"': ' 88.19', ' "Wins"': ' 61'}),
Document(page_content='Astros', metadata={' "Payroll (millions)"': ' 60.65', ' "Wins"': ' 55'})]