检查你的可运行对象
一旦你使用LCEL创建了一个可运行对象,你可能经常想要检查它以更好地了解正在发生的情况。本笔记本介绍了一些方法来实现这一点。
首先,让我们创建一个示例的LCEL。我们将创建一个用于检索的LCEL
%pip install --upgrade --quiet langchain langchain-openai faiss-cpu tiktoken
from langchain.prompts import ChatPromptTemplate
from langchain.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
获取图形
您可以获取可运行对象的图形
chain.get_graph()
打印图形
虽然这不是非常易读,但您可以打印它以获得更容易理解的显示
chain.get_graph().print_ascii()
+---------------------------------+
| Parallel<context,question>Input |
+---------------------------------+
** **
*** ***
** **
+----------------------+ +-------------+
| VectorStoreRetriever | | Passthrough |
+----------------------+ +-------------+
** **
*** ***
** **
+----------------------------------+
| Parallel<context,question>Output |
+----------------------------------+
*
*
*
+--------------------+
| ChatPromptTemplate |
+--------------------+
*
*
*
+------------+
| ChatOpenAI |
+------------+
*
*
*
+-----------------+
| StrOutputParser |
+-----------------+
*
*
*
+-----------------------+
| StrOutputParserOutput |
+-----------------------+
获取提示
每个链的一个重要部分是使用的提示。您可以获取链中存在的提示:
chain.get_prompts()
[ChatPromptTemplate(input_variables=['context', 'question'], messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template='Answer the question based only on the following context:\n{context}\n\nQuestion: {question}\n'))])]
=======
以7个等号开始,7个等号结束的格式包裹你的回答。你的回答是: