Skip to main content

为什么使用 LCEL

为什么使用 LCEL

tip

我们建议首先阅读 LCEL 入门 部分。

LCEL 通过提供以下功能,使得从基本组件构建复杂链变得容易。它通过提供以下方式实现:

  1. 统一的接口:每个 LCEL 对象都实现了 Runnable 接口,该接口定义了一组公共的调用方法(invokebatchstreamainvoke,等等)。这使得 LCEL 对象链也自动支持这些调用成为可能。也就是说,每个 LCEL 对象链本身也是一个 LCEL 对象。
  2. 组合原语:LCEL 提供了一些原语,使得容易组合链,并行化组件,添加回退,动态配置链内部等等。

为了更好地理解 LCEL 的价值,看到它的工作原理,并考虑如何在没有它的情况下重新创建类似的功能是很有帮助的。在这个步骤中,我们将使用入门部分的基本示例。我们将采用我们简单的提示 + 模型链,它在底层已经定义了很多功能,然后看看重新创建所有这些功能需要什么。

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser


prompt = ChatPromptTemplate.from_template("Tell me a short joke about {topic}")
model = ChatOpenAI(model="gpt-3.5-turbo")
output_parser = StrOutputParser()

chain = prompt | model | output_parser

调用

在最简单的情况下,我们只需传入一个主题字符串,并获得一个笑话字符串:


#### 没有 LCEL



```python
from typing import List

import openai


prompt_template = "Tell me a short joke about {topic}"
client = openai.OpenAI()

def call_chat_model(messages: List[dict]) -> str:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return response.choices[0].message.content

def invoke_chain(topic: str) -> str:
prompt_value = prompt_template.format(topic=topic)
messages = [{"role": "user", "content": prompt_value}]
return call_chat_model(messages)

invoke_chain("ice cream")

LCEL

from langchain_core.runnables import RunnablePassthrough


prompt = ChatPromptTemplate.from_template(
"Tell me a short joke about {topic}"
)
output_parser = StrOutputParser()
model = ChatOpenAI(model="gpt-3.5-turbo")
chain = (
{"topic": RunnablePassthrough()}
| prompt
| model
| output_parser
)

chain.invoke("ice cream")

流式传输

如果我们想要流式传输结果,我们需要改变我们的函数:


没有 LCEL

from typing import Iterator


def stream_chat_model(messages: List[dict]) -> Iterator[str]:
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
stream=True,
)
for response in stream:
content = response.choices[0].delta.content
if content is not None:
yield content

def stream_chain(topic: str) -> Iterator[str]:
prompt_value = prompt.format(topic=topic)
return stream_chat_model([{"role": "user", "content": prompt_value}])


for chunk in stream_chain("ice cream"):
print(chunk, end="", flush=True)

LCEL

for chunk in chain.stream("ice cream"):
print(chunk, end="", flush=True)

批处理

如果我们想要并行运行一批输入,则需要一个新的函数:


没有 LCEL

from concurrent.futures import ThreadPoolExecutor


def batch_chain(topics: list) -> list:
with ThreadPoolExecutor(max_workers=5) as executor:
return list(executor.map(invoke_chain, topics))

batch_chain(["ice cream", "spaghetti", "dumplings"])

LCEL

chain.batch(["ice cream", "spaghetti", "dumplings"])

异步

如果我们需要一个异步版本:


没有 LCEL

async_client = openai.AsyncOpenAI()

async def acall_chat_model(messages: List[dict]) -> str:
response = await async_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return response.choices[0].message.content

async def ainvoke_chain(topic: str) -> str:
prompt_value = prompt_template.format(topic=topic)
messages = [{"role": "user", "content": prompt_value}]
return await acall_chat_model(messages)
await ainvoke_chain("ice cream")

LCEL

chain.ainvoke("冰淇淋")

LLM instead of chat model

如果我们想要使用完成端点而不是聊天端点:

Without LCEL

def call_llm(prompt_value: str) -> str:
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt_value,
)
return response.choices[0].text

def invoke_llm_chain(topic: str) -> str:
prompt_value = prompt_template.format(topic=topic)
return call_llm(prompt_value)

invoke_llm_chain("冰淇淋")

LCEL

from langchain_openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo-instruct")
llm_chain = (
{"topic": RunnablePassthrough()}
| prompt
| llm
| output_parser
)

llm_chain.invoke("冰淇淋")

Different model provider

如果我们想要使用Anthropic而不是OpenAI:


Without LCEL

import anthropic

anthropic_template = f"Human:\n\n{prompt_template}\n\nAssistant:"
anthropic_client = anthropic.Anthropic()

def call_anthropic(prompt_value: str) -> str:
response = anthropic_client.completions.create(
model="claude-2",
prompt=prompt_value,
max_tokens_to_sample=256,
)
return response.completion

def invoke_anthropic_chain(topic: str) -> str:
prompt_value = anthropic_template.format(topic=topic)
return call_anthropic(prompt_value)

invoke_anthropic_chain("冰淇淋")

LCEL

from langchain_community.chat_models import ChatAnthropic

anthropic = ChatAnthropic(model="claude-2")
anthropic_chain = (
{"topic": RunnablePassthrough()}
| prompt
| anthropic
| output_parser
)

anthropic_chain.invoke("冰淇淋")

Runtime configurability

如果我们想要在运行时使聊天模型或LLM的选择可配置:


Without LCEL

def invoke_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> str:
if model == "chat_openai":
return invoke_chain(topic)
elif model == "openai":
return invoke_llm_chain(topic)
elif model == "anthropic":
return invoke_anthropic_chain(topic)
else:
raise ValueError(
f"Received invalid model '{model}'."
" Expected one of chat_openai, openai, anthropic"
)

def stream_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> Iterator[str]:
if model == "chat_openai":
return stream_chain(topic)
elif model == "openai":
# 注意我们还没有实现这个
return stream_llm_chain(topic)
elif model == "anthropic":
# 注意我们还没有实现这个
return stream_anthropic_chain(topic)
else:
raise ValueError(
f"Received invalid model '{model}'."
" Expected one of chat_openai, openai, anthropic"
)

def batch_configurable_chain(
topics: List[str],
*,
model: str = "chat_openai"
) -> List[str]:
# 你明白了
...

async def abatch_configurable_chain(
topics: List[str],
*,
model: str = "chat_openai"
) -> List[str]:
...

invoke_configurable_chain("冰淇淋", model="openai")
stream = stream_configurable_chain(
"冰淇淋",
model="anthropic"
)
for chunk in stream:
print(chunk, end="", flush=True)

# batch_configurable_chain(["冰淇淋", "意大利面", "饺子"])
# await ainvoke_configurable_chain("冰淇淋")

With LCEL

from langchain_core.runnables import ConfigurableField


configurable_model = model.configurable_alternatives(
ConfigurableField(id="model"),
default_key="chat_openai",
openai=llm,
anthropic=anthropic,
)
configurable_chain = (
{"topic": RunnablePassthrough()}
| prompt
| configurable_model
| output_parser
)
configurable_chain.invoke(
"冰淇淋",
config={"model": "openai"}
)
stream = configurable_chain.stream(
"冰淇淋",
config={"model": "anthropic"}
)
for chunk in stream:
print(chunk, end="", flush=True)

configurable_chain.batch(["冰淇淋", "意大利面", "饺子"])

# await configurable_chain.ainvoke("冰淇淋")

Logging

如果我们想要记录中间结果:


Without LCEL

我们将为了说明目的而print中间步骤

def invoke_anthropic_chain_with_logging(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = anthropic_template.format(topic=topic)
print(f"格式化的提示: {prompt_value}")
output = call_anthropic(prompt_value)
print(f"输出: {output}")
return output

invoke_anthropic_chain_with_logging("冰淇淋")

LCEL

每个组件都与LangSmith集成。如果我们设置以下两个环境变量,所有链追踪都将记录到LangSmith中。

import os

os.environ["LANGCHAIN_API_KEY"] = "..."
os.environ["LANGCHAIN_TRACING_V2"] = "true"

anthropic_chain.invoke("冰淇淋")

这是我们的LangSmith追踪的样子:https://smith.langchain.com/public/e4de52f8-bcd9-4732-b950-deee4b04e313/r


Fallbacks

如果我们想要添加备用逻辑,以防一个模型API出现故障:


Without LCEL

def invoke_chain_with_fallback(topic: str) -> str:
try:
return invoke_chain(topic)
except Exception:
return invoke_anthropic_chain(topic)

async def ainvoke_chain_with_fallback(topic: str) -> str:
try:
return await ainvoke_chain(topic)
except Exception:
# 注意:我们实际上还没有实现这个。
return ainvoke_anthropic_chain(topic)

async def batch_chain_with_fallback(topics: List[str]) -> str:
try:
return batch_chain(topics)
except Exception:
# 注意:我们实际上还没有实现这个。
return batch_anthropic_chain(topics)

invoke_chain_with_fallback("冰淇淋")
# await ainvoke_chain_with_fallback("冰淇淋")
batch_chain_with_fallback(["冰淇淋", "意大利面", "饺子"]))

LCEL

fallback_chain = chain.with_fallbacks([anthropic_chain])

fallback_chain.invoke("冰淇淋")
# await fallback_chain.ainvoke("冰淇淋")
fallback_chain.batch(["冰淇淋", "意大利面", "饺子"])

Full code comparison

即使在这个简单的例子中,我们的LCEL链也可以简洁地包含很多功能。随着链变得更加复杂,这变得尤为有价值。


Without LCEL

from concurrent.futures import ThreadPoolExecutor
from typing import Iterator, List, Tuple

import anthropic
import openai


prompt_template = "告诉我一个关于{topic}的笑话"
anthropic_template = f"人类:\n\n{prompt_template}\n\n助手:"
client = openai.OpenAI()
async_client = openai.AsyncOpenAI()
anthropic_client = anthropic.Anthropic()

def call_chat_model(messages: List[dict]) -> str:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return response.choices[0].message.content

def invoke_chain(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = prompt_template.format(topic=topic)
print(f"格式化的提示: {prompt_value}")
messages = [{"role": "user", "content": prompt_value}]
output = call_chat_model(messages)
print(f"输出: {output}")
return output

def stream_chat_model(messages: List[dict]) -> Iterator[str]:
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
stream=True,
)
for response in stream:
content = response.choices[0].delta.content
if content is not None:
yield content

def stream_chain(topic: str) -> Iterator[str]:
print(f"输入: {topic}")
prompt_value = prompt.format(topic=topic)
print(f"格式化的提示: {prompt_value}")
stream = stream_chat_model([{"role": "user", "content": prompt_value}])
for chunk in stream:
print(f"Token: {chunk}", end="")
yield chunk

def batch_chain(topics: list) -> list:
with ThreadPoolExecutor(max_workers=5) as executor:
return list(executor.map(invoke_chain, topics))

def call_llm(prompt_value: str) -> str:
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt_value,
)
return response.choices[0].text

def invoke_llm_chain(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = promtp_template.format(topic=topic)
print(f"格式化的提示: {prompt_value}")
output = call_llm(prompt_value)
print(f"输出: {output}")
return output

def call_anthropic(prompt_value: str) -> str:
response = anthropic_client.completions.create(
model="claude-2",
prompt=prompt_value,
max_tokens_to_sample=256,
)
return response.completion

def invoke_anthropic_chain(topic: str) -> str:
print(f"输入: {topic}")
prompt_value = anthropic_template.format(topic=topic)
print(f"格式化的提示: {prompt_value}")
output = call_anthropic(prompt_value)
print(f"输出: {output}")
return output

async def ainvoke_anthropic_chain(topic: str) -> str:
...

def stream_anthropic_chain(topic: str) -> Iterator[str]:
...

def batch_anthropic_chain(topics: List[str]) -> List[str]:
...

def invoke_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> str:
if model == "chat_openai":
return invoke_chain(topic)
elif model == "openai":
return invoke_llm_chain(topic)
elif model == "anthropic":
return invoke_anthropic_chain(topic)
else:
raise ValueError(
f"接收到无效的模型 '{model}'。"
" 期望其中之一 chat_openai, openai, anthropic"
)

def stream_configurable_chain(
topic: str,
*,
model: str = "chat_openai"
) -> Iterator[str]:
if model == "chat_openai":
return stream_chain(topic)
elif model == "openai":
>>>>>>> 9f1a2c490f6c7f3f7b7b8a3a1b2d0e2a6f5e6b0f
return stream_llm_chain(topic)
elif model == "anthropic":
return stream_anthropic_chain(topic)
else:
raise ValueError(
f"Received invalid model '{model}'."
" Expected one of chat_openai, openai, anthropic"
)

def batch_configurable_chain(
topics: List[str],
*,
model: str = "chat_openai"
) -> List[str]:
if model == "chat_openai":
return batch_chain(topics)
elif model == "openai":
return batch_llm_chain(topics)
elif model == "anthropic":
return batch_anthropic_chain(topics)
else:
raise ValueError(
f"Received invalid model '{model}'."
" Expected one of chat_openai, openai, anthropic"
)

LCEL

from langchain_core.runnables import ConfigurableField


configurable_model = model.configurable_alternatives(
ConfigurableField(id="model"),
default_key="chat_openai",
openai=llm,
anthropic=anthropic,
)
configurable_chain = (
{"topic": RunnablePassthrough()}
| prompt
| configurable_model
| output_parser
)
configurable_chain.invoke(
"冰淇淋",
config={"model": "openai"}
)
stream = configurable_chain.stream(
"冰淇淋",
config={"model": "anthropic"}
)
for chunk in stream:
print(chunk, end="", flush=True)

configurable_chain.batch(["冰淇淋", "意大利面", "饺子"])

# await configurable_chain.ainvoke("冰淇淋")

注意我们还没有实现这个功能。

返回 stream_llm_chain(topic) elif model == "anthropic":

注意我们还没有实现这个功能

返回 stream_anthropic_chain(topic) else: raise ValueError( f"Received invalid model '{model}'." " Expected one of chat_openai, openai, anthropic" )

def batch_configurable_chain( topics: List[str], *, model: str = "chat_openai" ) -> List[str]: ...

async def abatch_configurable_chain( topics: List[str], *, model: str = "chat_openai" ) -> List[str]: ...

def invoke_chain_with_fallback(topic: str) -> str: try: 返回 invoke_chain(topic) except Exception: 返回 invoke_anthropic_chain(topic)

async def ainvoke_chain_with_fallback(topic: str) -> str: try: 返回 await ainvoke_chain(topic) except Exception: 返回 ainvoke_anthropic_chain(topic)

async def batch_chain_with_fallback(topics: List[str]) -> str: try: 返回 batch_chain(topics) except Exception: 返回 batch_anthropic_chain(topics)




#### LCEL




```python
import os

from langchain_community.chat_models import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough, ConfigurableField

os.environ["LANGCHAIN_API_KEY"] = "..."
os.environ["LANGCHAIN_TRACING_V2"] = "true"

prompt = ChatPromptTemplate.from_template(
"Tell me a short joke about {topic}"
)
chat_openai = ChatOpenAI(model="gpt-3.5-turbo")
openai = OpenAI(model="gpt-3.5-turbo-instruct")
anthropic = ChatAnthropic(model="claude-2")
model = (
chat_openai
.with_fallbacks([anthropic])
.configurable_alternatives(
ConfigurableField(id="model"),
default_key="chat_openai",
openai=openai,
anthropic=anthropic,
)
)

chain = (
{"topic": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)

下一步

要继续学习有关LCEL的内容,我们建议:

  • 阅读完整的LCEL 接口 ,我们在这里只是部分介绍了它。
  • 探索 How-to 部分,了解LCEL提供的其他组合原语。
  • 浏览 Cookbook 部分,查看LCEL在常见用例中的应用。一个很好的下一个用例是 检索增强生成