PromptLayer ChatOpenAI
该示例演示如何连接到PromptLayer以开始记录您的ChatOpenAI请求。
安装 PromptLayer
使用pip安装promptlayer
,以便将其与OpenAI一起使用。
pip install promptlayer
Imports
import os
from langchain.chat_models import PromptLayerChatOpenAI
from langchain.schema import HumanMessage
Set the Environment API Key
You can create a PromptLayer API Key at www.promptlayer.com by clicking the settings cog in the navbar.
Set it as an environment variable called PROMPTLAYER_API_KEY
.
os.environ["PROMPTLAYER_API_KEY"] = "**********"
Use the PromptLayerOpenAI LLM like normal
You can optionally pass in pl_tags
to track your requests with PromptLayer's tagging feature.
chat = PromptLayerChatOpenAI(pl_tags=["langchain"])
chat([HumanMessage(content="I am a cat and I want")])
AIMessage(content='to take a nap in a cozy spot. I search around for a suitable place and finally settle on a soft cushion on the window sill. I curl up into a ball and close my eyes, relishing the warmth of the sun on my fur. As I drift off to sleep, I can hear the birds chirping outside and feel the gentle breeze blowing through the window. This is the life of a contented cat.', additional_kwargs={})
现在,您应该在PromptLayer仪表板上看到上述请求。
使用 PromptLayer Track
如果您想使用任何PromptLayer跟踪功能,在实例化PromptLayer LLM时,您需要传递参数return_pl_id
以获取请求ID。
chat = PromptLayerChatOpenAI(return_pl_id=True)
chat_results = chat.generate([[HumanMessage(content="I am a cat and I want")]])
for res in chat_results.generations:
pl_request_id = res[0].generation_info["pl_request_id"]
promptlayer.track.score(request_id=pl_request_id, score=100)
使用PromptLayer可以在PromptLayer仪表板上跟踪模型的性能。如果您正在使用提示模板,还可以将模板附加到请求中。总体而言,这使您有机会在PromptLayer仪表板上跟踪不同模板和模型的性能。