多个回调处理程序
在前面的示例中,我们通过在创建对象时使用 callbacks=
来传递回调处理程序。在这种情况下,回调处理程序将仅适用于该特定对象。
然而,在许多情况下,当运行对象时传递处理程序会更有优势。当使用 callbacks
关键字参数通过 CallbackHandlers
传递时,这些回调处理程序将被所有参与执行的嵌套对象使用。例如,当将处理程序传递给 Agent
时,它将用于与代理相关的所有回调以及代理执行中涉及的所有对象,例如 Tools
、LLMChain
和 LLM
。
这样,我们就不必手动将处理程序附加到每个嵌套对象上。
from typing import Dict, Union, Any, List
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import tracing_enabled
from langchain.llms import OpenAI
# First, define custom callback handler implementations
class MyCustomHandlerOne(BaseCallbackHandler):
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> Any:
print(f"on_llm_start {serialized['name']}")
def on_llm_new_token(self, token: str, **kwargs: Any) -> Any:
print(f"on_new_token {token}")
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
"""Run when LLM errors."""
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> Any:
print(f"on_chain_start {serialized['name']}")
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> Any:
print(f"on_tool_start {serialized['name']}")
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
print(f"on_agent_action {action}")
class MyCustomHandlerTwo(BaseCallbackHandler):
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> Any:
print(f"on_llm_start (I'm the second handler!!) {serialized['name']}")
# Instantiate the handlers
handler1 = MyCustomHandlerOne()
handler2 = MyCustomHandlerTwo()
# Setup the agent. Only the `llm` will issue callbacks for handler2
llm = OpenAI(temperature=0, streaming=True, callbacks=[handler2])
tools = load_tools(["llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
# Callbacks for handler1 will be issued by every object involved in the
# Agent execution (llm, llmchain, tool, agent executor)
agent.run("What is 2 raised to the 0.235 power?", callbacks=[handler1])
on_chain_start AgentExecutor
on_chain_start LLMChain
on_llm_start OpenAI
on_llm_start (I'm the second handler!!) OpenAI
on_new_token I
on_new_token need
on_new_token to
on_new_token use
on_new_token a
on_new_token calculator
on_new_token to
on_new_token solve
on_new_token this
on_new_token .
on_new_token
Action
on_new_token :
on_new_token Calculator
on_new_token
Action
on_new_token Input
on_new_token :
on_new_token 2
on_new_token ^
on_new_token 0
on_new_token .
on_new_token 235
on_new_token
on_agent_action AgentAction(tool='Calculator', tool_input='2^0.235', log=' I need to use a calculator to solve this.\nAction: Calculator\nAction Input: 2^0.235')
on_tool_start Calculator
on_chain_start LLMMathChain
on_chain_start LLMChain
on_llm_start OpenAI
on_llm_start (I'm the second handler!!) OpenAI
on_new_token
on_new_token ```text
on_new_token
on_new_token 2
on_new_token **
on_new_token 0
on_new_token .
on_new_token 235
on_new_token
on_new_token ```
on_new_token ...
on_new_token num
on_new_token expr
on_new_token .
on_new_token evaluate
on_new_token ("
on_new_token 2
on_new_token **
on_new_token 0
on_new_token .
on_new_token 235
on_new_token ")
on_new_token ...
on_new_token
on_new_token
on_chain_start LLMChain
on_llm_start OpenAI
on_llm_start (I'm the second handler!!) OpenAI
on_new_token I
on_new_token now
on_new_token know
on_new_token the
on_new_token final
on_new_token answer
on_new_token .
on_new_token
Final
on_new_token Answer
on_new_token :
on_new_token 1
on_new_token .
on_new_token 17
on_new_token 690
on_new_token 67
on_new_token 372
on_new_token 187
on_new_token 674
on_new_token
'1.1769067372187674'