Skip to main content

Azure Cognitive Services Toolkit

这个工具包用来与Azure Cognitive Services API交互,实现一些多模态能力。

目前这个工具包中包含四个工具:

  • AzureCogsImageAnalysisTool:用于从图像中提取标题、对象、标签和文本。(注意:由于依赖于azure-ai-vision包,此工具目前尚不支持Mac OS,该包只支持Windows和Linux。)

  • AzureCogsFormRecognizerTool:用于从文档中提取文本、表格和键值对。

  • AzureCogsSpeech2TextTool:用于将语音转录为文本。

  • AzureCogsText2SpeechTool:用于将文本合成为语音。

首先,您需要设置一个Azure账户并创建一个Cognitive Services资源。您可以按照这里的说明来创建一个资源。

然后,您需要获取资源的终结点、密钥和区域,并将它们设置为环境变量。您可以在资源的"Keys and Endpoint"页面中找到它们。

# !pip install --upgrade azure-ai-formrecognizer > /dev/null
# !pip install --upgrade azure-cognitiveservices-speech > /dev/null

# For Windows/Linux
# !pip install --upgrade azure-ai-vision > /dev/null
import os

os.environ["OPENAI_API_KEY"] = "sk-"
os.environ["AZURE_COGS_KEY"] = ""
os.environ["AZURE_COGS_ENDPOINT"] = ""
os.environ["AZURE_COGS_REGION"] = ""

创建工具包

from langchain.agents.agent_toolkits import AzureCognitiveServicesToolkit

toolkit = AzureCognitiveServicesToolkit()
[tool.name for tool in toolkit.get_tools()]
['Azure Cognitive Services Image Analysis',
'Azure Cognitive Services Form Recognizer',
'Azure Cognitive Services Speech2Text',
'Azure Cognitive Services Text2Speech']

在Agent中使用

from langchain import OpenAI
from langchain.agents import initialize_agent, AgentType
llm = OpenAI(temperature=0)
agent = initialize_agent(
tools=toolkit.get_tools(),
llm=llm,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
agent.run(
"What can I make with these ingredients?"
"https://images.openai.com/blob/9ad5a2ab-041f-475f-ad6a-b51899c50182/ingredients.png"
)
> Entering new AgentExecutor chain...

Action:
```
{
"action": "Azure Cognitive Services Image Analysis",
"action_input": "https://images.openai.com/blob/9ad5a2ab-041f-475f-ad6a-b51899c50182/ingredients.png"
}
```


Observation: Caption: a group of eggs and flour in bowls
Objects: Egg, Egg, Food
Tags: dairy, ingredient, indoor, thickening agent, food, mixing bowl, powder, flour, egg, bowl
Thought: I can use the objects and tags to suggest recipes
Action:
```
{
"action": "Final Answer",
"action_input": "You can make pancakes, omelettes, or quiches with these ingredients!"
}
```

> Finished chain.





'You can make pancakes, omelettes, or quiches with these ingredients!'
audio_file = agent.run("Tell me a joke and read it out for me.")
> Entering new AgentExecutor chain...
Action:
```
{
"action": "Azure Cognitive Services Text2Speech",
"action_input": "Why did the chicken cross the playground? To get to the other slide!"
}
```


Observation: /tmp/tmpa3uu_j6b.wav
Thought: I have the audio file of the joke
Action:
```
{
"action": "Final Answer",
"action_input": "/tmp/tmpa3uu_j6b.wav"
}
```

> Finished chain.





'/tmp/tmpa3uu_j6b.wav'
from IPython import display

audio = display.Audio(audio_file)
display.display(audio)