LangChain 装饰器 ✨
LangChain 装饰器是 LangChain 之上的一层,为编写自定义的 langchain prompt 和 chain 提供了简化的语法糖 🍭
反馈、问题和贡献请在此处提出: ju-bezdek/langchain-decorators
主要原则和优势:
- 以更具
Python 风格
的方式编写代码 - 编写多行提示,不会干扰代码流程的缩进
- 利用 IDE 内置的 提示、类型检查 和 弹出框,快速查看函数的提示、参数等信息
- 充分利用 🦜🔗 LangChain 生态系统的全部功能
- 添加对 可选参数 的支持
- 通过将参数绑定到一个类,轻松共享提示之间的参数
下面是使用 LangChain 装饰器 ✨ 编写的简单代码示例
@llm_prompt
def write_me_short_post(topic:str, platform:str="twitter", audience:str = "developers")->str:
"""
Write me a short header for my post about {topic} for {platform} platform.
It should be for {audience} audience.
(Max 15 words)
"""
return
# run it naturaly
write_me_short_post(topic="starwars")
# or
write_me_short_post(topic="starwars", platform="redit")
快速开始
安装
pip install langchain_decorators
示例
开始的好方法是查看这里的示例:
定义其他参数
这里我们只是使用 llm_prompt
装饰器将函数标记为提示,从而有效地将其转换为 LLMChain。而不是运行它
标准的 LLMchain 比仅仅有 inputs_variables 和 prompt 多得多... 这个实现细节在装饰器中隐藏了起来。 下面是它的工作原理:
- 使用 全局设置:
# define global settings for all prompty (if not set - chatGPT is the current default)
from langchain_decorators import GlobalSettings
GlobalSettings.define_settings(
default_llm=ChatOpenAI(temperature=0.0), this is default... can change it here globally
default_streaming_llm=ChatOpenAI(temperature=0.0,streaming=True), this is default... can change it here for all ... will be used for streaming
)
- 使用预定义的 提示类型
#You can change the default prompt types
from langchain_decorators import PromptTypes, PromptTypeSettings
PromptTypes.AGENT_REASONING.llm = ChatOpenAI()
# Or you can just define your own ones:
class MyCustomPromptTypes(PromptTypes):
GPT4=PromptTypeSettings(llm=ChatOpenAI(model="gpt-4"))
@llm_prompt(prompt_type=MyCustomPromptTypes.GPT4)
def write_a_complicated_code(app_idea:str)->str:
...
- 直接在装饰器中定义设置
from langchain.llms import OpenAI
@llm_prompt(
llm=OpenAI(temperature=0.7),
stop_tokens=["\nObservation"],
...
)
def creative_writer(book_title:str)->str:
...
传递内存和/或回调:
只需在函数中声明它们(或使用 kwargs 传递任何内容)
@llm_prompt()
async def write_me_short_post(topic:str, platform:str="twitter", memory:SimpleMemory = None):
"""
{history_key}
Write me a short header for my post about {topic} for {platform} platform.
It should be for {audience} audience.
(Max 15 words)
"""
pass
await write_me_short_post(topic="old movies")
简化流式处理
如果我们想要利用流式处理:
- 我们需要将提示定义为异步函数
- 在装饰器中开启流式处理,或者我们可以定义具有流式处理的 PromptType
- 使用 StreamingContext 来捕获流
这样,我们只需标记要进行流式处理的提示,而不需要调整使用哪个 LLM,将流处理处理程序传递到链的特定部分... 只需在提示/提示类型上开启/关闭流式处理...
只有在流上下文中调用时才会发生流式处理... 在那里我们可以定义一个简单的函数来处理流
# this code example is complete and should run as it is
from langchain_decorators import StreamingContext, llm_prompt
# this will mark the prompt for streaming (useful if we want stream just some prompts in our app... but don't want to pass distribute the callback handlers)
# note that only async functions can be streamed (will get an error if it's not)
@llm_prompt(capture_stream=True)
async def write_me_short_post(topic:str, platform:str="twitter", audience:str = "developers"):
"""
Write me a short header for my post about {topic} for {platform} platform.
It should be for {audience} audience.
(Max 15 words)
"""
pass
# just an arbitrary function to demonstrate the streaming... wil be some websockets code in the real world
tokens=[]
def capture_stream_func(new_token:str):
tokens.append(new_token)
# if we want to capture the stream, we need to wrap the execution into StreamingContext...
# this will allow us to capture the stream even if the prompt call is hidden inside higher level method
# only the prompts marked with capture_stream will be captured here
with StreamingContext(stream_to_stdout=True, callback=capture_stream_func):
result = await run_prompt()
print("Stream finished ... we can distinguish tokens thanks to alternating colors")
print("\nWe've captured",len(tokens),"tokens🎉\n")
print("Here is the result:")
print(result)
提示声明
默认情况下,提示是函数的整个文档,除非您标记了您的提示
记录您的提示
我们可以指定我们文档的哪个部分是提示定义,通过使用带有 <prompt>
语言标签的代码块
@llm_prompt
def write_me_short_post(topic:str, platform:str="twitter", audience:str = "developers"):
"""
Here is a good way to write a prompt as part of a function docstring, with additional documentation for devs.
It needs to be a code block, marked as a `<prompt>` language
``` <prompt>
为我的关于 {topic} 在 {platform} 平台上的帖子撰写一个简短的标题。
它应该面向 {audience} 的观众。
(最多 15 个词)
```
Now only to code block above will be used as a prompt, and the rest of the docstring will be used as a description for developers.
(It has also a nice benefit that IDE (like VS code) will display the prompt properly (not trying to parse it as markdown, and thus not showing new lines properly))
"""
return
聊天消息提示
对于聊天模型来说,将提示定义为一组消息模板非常有用... 这是如何做的:
@llm_prompt
def simulate_conversation(human_input:str, agent_role:str="a pirate"):
"""
## System message
- note the `:system` sufix inside the <prompt:_role_> tag
``` <prompt:system>
你是一个 {agent_role} 黑客。你必须像一个黑客一样行动。
你总是用代码回复,使用 Python 或 JavaScript 代码块...
例如:
... 不要回复其他任何东西... 只回复代码 - 保持你的角色。
```
# human message
(we are using the real role that are enforced by the LLM - GPT supports system, assistant, user)
``` <prompt:user>
你好,你是谁
```
a reply:
``` <prompt:assistant>
\``` python <<- escaping inner code block with \ that should be part of the prompt
def hello():
print("Argh... hello you pesky pirate")
\```
```
we can also add some history using placeholder
``` <prompt:placeholder>
{history}
```
``` <prompt:user>
{human_input}
```
Now only to code block above will be used as a prompt, and the rest of the docstring will be used as a description for developers.
(It has also a nice benefit that IDE (like VS code) will display the prompt properly (not trying to parse it as markdown, and thus not showing new lines properly))
"""
pass
这里的角色是模型的本机角色(聊天 GPT 的助手、用户、系统)
可选部分
- 您可以定义您的提示的整个部分,这些部分应该是可选的
- 如果部分中有任何输入缺失,整个部分将不会呈现
这种情况的语法如下:
@llm_prompt
def prompt_with_optional_partials():
"""
this text will be rendered always, but
{? anything inside this block will be rendered only if all the {value}s parameters are not empty (None | "") ?}
you can also place it in between the words
this too will be rendered{? , but
this block will be rendered only if {this_value} and {this_value}
is not empty?} !
"""
输出解析器
- llm_prompt 装饰器会根据输出类型自动检测最佳输出解析器(如果未设置,则返回原始字符串)
- 列表、字典和 pydantic 输出也被原生支持(自动处理)
# this code example is complete and should run as it is
from langchain_decorators import llm_prompt
@llm_prompt
def write_name_suggestions(company_business:str, count:int)->list:
""" Write me {count} good name suggestions for company that {company_business}
"""
pass
write_name_suggestions(company_business="sells cookies", count=5)
更复杂的结构
对于字典/ pydantic,您需要指定格式化指令... 这可能很繁琐,这就是为什么您可以让输出解析器根据模型(pydantic)为您生成指令
from langchain_decorators import llm_prompt
from pydantic import BaseModel, Field
class TheOutputStructureWeExpect(BaseModel):
name:str = Field (description="The name of the company")
headline:str = Field( description="The description of the company (for landing page)")
employees:list[str] = Field(description="5-8 fake employee names with their positions")
@llm_prompt()
def fake_company_generator(company_business:str)->TheOutputStructureWeExpect:
""" Generate a fake company that {company_business}
{FORMAT_INSTRUCTIONS}
"""
return
company = fake_company_generator(company_business="sells cookies")
# print the result nicely formatted
print("Company name: ",company.name)
print("company headline: ",company.headline)
print("company employees: ",company.employees)
将提示绑定到对象
from pydantic import BaseModel
from langchain_decorators import llm_prompt
class AssistantPersonality(BaseModel):
assistant_name:str
assistant_role:str
field:str
@property
def a_property(self):
return "whatever"
def hello_world(self, function_kwarg:str=None):
"""
We can reference any {field} or {a_property} inside our prompt... and combine it with {function_kwarg} in the method
"""
@llm_prompt
def introduce_your_self(self)->str:
"""
``` <prompt:system>
你是一个名为 {assistant_name} 的助手。
你的角色是扮演 {assistant_role}
```
``` <prompt:user>
介绍一下你自己(不超过 20 个词)
```
"""
personality = AssistantPersonality(assistant_name="John", assistant_role="a pirate")
print(personality.introduce_your_self(personality))
更多示例:
- 这些以及更多示例也可以在 此处的 colab notebook 中找到
- 包括使用纯 langchain 装饰器重新实现的 ReAct Agent